A Complete Guide About Solar Panel Installation. Step by Step Procedure with Calculation & Diagrams
Below is a DIY (do it yourself) complete note on Solar Panel design installation, calculation about No of solar panels, batteries rating / backup time, inverter/UPS rating, load and required power in Watts. with Circuit, wiring diagrams and solved examples. Anyone who follows the simple steps (DIY tutorial) below can install and connect solar panels in home for residential applications.
If you pick this article related to solar panel installation, You will be able to;
Solar Panel Installation: Step by Step Procedure with calculation and examples
Before we start, its recommended to read the article about proper selection & different types of solar panels and photovoltaic panel for home & commercial use as well. To the point, lets know how to wire and install a solar panel system according to the proper calculation and load requirements.
Now lets begin,
Suppose, we are going to install a solar power system in our home for a total load of 800W where the required backup time of battery is 3 hours (You may use it your own as it is just for sample calculation)
Load = 800 Watts
Required Backup time for batteries = 3 Hours
What we need to know?
- Inverter / UPS Rating =?
- No of batteries for backup power =?
- Backup Hours of batteries =?
- Series or Parallel Connection of Batteries = ?
- Charging Current for Batteries = ?
- Charging Time for batteries = ?
- Required No of Solar Panel =?
- Series or Parallel Connection of Solar Panels = ?
- Rating of Charge Controller = ?
Solution:
Inverter / UPS Rating:
Inverter / UPS rating should be greater than 25% of the total load (for the future load as well as taking losses in consideration)
800 x (25/100) = 200W
Our Load + 25% Extra Power = 800+200 = 1000 Watts
This is the rating of the UPS (Inverter) i.e. We need 1000W UPS / Inverter for solar panel installation according to our need (based on calculations)
Required No. of Batteries
Now the required Back up Time of batteries in Hours = 3 Hours
Suppose we are going to install 100Ah, 12 V batteries,
12V x 100Ah = 1200 Wh
Now for one Battery (i.e. the Backup time of one battery)
1200 Wh / 800 W = 1.5 Hours
But our required Backup time is 3 Hours.
Therefore, 3/1.5 = 2 → i.e. we will have to connect two (2) batteries each of 100Ah, 12V.
Backup Hours of Batteries
If the number of batteries are given, and you want to know the Backup Time for these given batteries, then use this formula to calculate the backup hours of batteries.
1200 Wh x 2 Batteries = 2400 Wh
2400 Wh / 800 W = 3 hours.
In the first scenario, we will use 12V inverter system, therefore, we will have to connect two (2) batteries (each of 12V, 100 Ah) in Parallel. But a question raised below:
Series or Parallel Connection for Batteries
Why Batteries in Parallel, not in Series?
Because this is a 12V inverter System, so if we connect these batteries in series instead of parallel, then the rating of batteries become V1 + V2 = 12V + 12V = 24V while the current rating would be same i.e.100Ah.
Good to Know: In Series Circuits, Current is same in each wire or section while voltage is different i.e. Voltage are additive e.g. V1+V2+V3….Vn.
That’s why we will connect the batteries in parallel, because the Voltage of batteries (12 V) remains same, while its Ah (Ampere Hour) rating will be increased. i.e. the system would become = 12V and 100Ah +100Ah = 200Ah.
Good to Know: In parallel Connection, Voltage will be same in each wire or section, while current will be different i.e current is additive e.g. I1+I2+I3…+In
We will now connect 2 batteries in parallel (each of 100Ah, 12V)
i.e. 2 12V, 100Ah batteries will be connected in Parallel
= 12V, 100Ah + 100Ah = 12V, 200 Ah (Parallel)
Good to Know: Power in watts is additive in any configuration of resistive circuit: P Total= P1 + P2 + P3. . . Pn (Neglecting the 40% installation loss)
Charging Current Needed for Batteries
Now the Required Charging Current for these two batteries.
(Charging current should be 1/10 of batteries Ah)
200Ah x (1/10) = 20A
Charging Time Required for Battery
Here is the formula of Charging Time of a Lead acid battery.
Charging Time of battery = Battery Ah / Charging Current
T = Ah / A
For example, for a single 12V, 100Ah battery, The charging time would be:
T = Ah / A = 100Ah / 10A = 10 Hrs (Ideal Case)
due to some losses, (it has been noted that 40% of losses occurred during the battery charging), this way, we take 10-12 A charging current instead of 10 A, this way, the charging time required for a 12V, 100Ah battery would be:
100Ah x ( 40/100 ) = 40 (100Ah x 40% of losses)
the battery rating would be 100Ah + 40 Ah = 140 Ah (100Ah + losses)
Now the required charging current for the battery would be:
140Ah / 12A = 11.6 Hours.
Required No. of Solar Panels (Series or Parallel) ?
Now the required No of Solar Panels we need for the above system as below.
Scenario 1: DC Load is Not Connected = Only Battery Charging
We know the famous power formula (DC)
P = VI ………… (Power = Voltage x Current)
Putting the values of batteries and charging current.
P = 12V x 20 A
P = 240 Watts
these are the required wattage of solar panel (only for battery charging, and then battery will supply power to the load i.e. direct load is not connected to the solar panels)
Now
240W/60W = 4 Nos of Solar panels
Therefore, we will connect 4 Solar Panels (each of 60W,12V,5A) in parallel.
The above calculations and system was only for battery charging (and then battery will supply power to the desired Load) to AC electrical appliances, which will get power through inverter and DC loads via Charge controller (via charged batteries)
Scenario 2: DC Load is Connected as well as Battery Charging
Now suppose there is a 10A directly connected load to the panels through inverter (or may be DC load via Charge Controller). During the sunshine, the solar panel provide 10A to the directly connected load + 20A to the battery charging i.e. solar panels charge the battery as well as provide 10A to the the load as well.
In this case, the total required current (20 A for Batteries Charging and 10 A for directly connected load)
In this case above, total required current in Amperes,
20A + 10 A = 30A
Now, I = 30 A, then required Power
P = V x I = 12V x 30A = 360 Watts
I.e. we need 360 W system for the above explained system (This is for both Direct Load and Batteries Charging)
Now, the number of solar panels we need
360/60W = 6 Nos of Solar Panels
Therefore, we will Connect 6 Nos of Solar panels in parallel (each of 60W, 12V,5A)
Click image to enlarge
Related Posts:
- Series Connection of Solar Panel with Auto UPS System
- Parallel Connection of Batteries with Solar Panel
Rating of Charge Controller
As we have calculated above that the charging current for 200Ah battery is 20-22 Amperes (22A For Battery Charging+10A for direct DC Load), therefore we can use a charge controller about 30-32 Amp.
Note: The above calculation is based on ideal case, so it is recommended to always choose a solar panel some bigger then we need, because, there are some losses occurs during battery charging via solar panel as well as the sunshine is not always in ideal mood.
How Many Watts of Solar Panels Do We Need?
We have shown a very simple method in the previous post to find that How much Watts solar panel we need for our home electrical appliances? depends on the sunshine time and the load in watts we need to power up an electrical appliance. In case if you need to run an appliance only on solar power without battery backup power, you may need to refer to the previous article which shows how to determine the number of required solar panels to run an appliance during the day without batteries.
- Related Posts: Basic Components Needed for Solar Panel System Installation
Which Solar Panel Should We Select?
First of all, there are two main types of solar panel e.g. N-Type and P-Type photovoltaic cells. The N-Type solar panel is suitable in terms of efficiency and long-life span while P-Type is recommended to reduce the initial cost.
Among lots of brands and material of solar panels like c-Si, String Ribon, Thin Film Solar Cells (TFSC) or (TFPV), Amorphous silicon (a-Si or a-Si:H),Cadmium Telluride (CdTe) Solar Cells, Copper Indium Gallium Selenide (CIGS/ CIS) Solar Cells, BIPV: Building Integrated Photovoltaic Panels, Hybrid Solar Cells and PV Panels, We have discussed in a very details post “different types of solar panels with advantages/advantages, cost, and applications” This way, you will be able to determine the best type of solar panel for home use.
Related Posts:
- Series, Parallel and Series-Parallel Connection of Solar Panels
- Parameters of a Solar Cell and Characteristics of a PV Panel
- How to Design a Solar Photovoltaic Powered DC Water Pump?
- PWM Solar Charge Controller – Working, Sizing and Selection
- MPPT Solar Charge Controller – Working, Sizing and Selection
- How to Connect Automatic UPS / Inverter to the Home Supply System?
- How to Find The Suitable Size of Cable & Wire for Electrical Wiring Installation?