What is Power Factor (Cos ϕ) ? Cos fi or P.F Definition & Formulas

Power Factor Definitions and Formulas

In electrical engineering, power factor is only and only related to AC circuits i.e. there is no power factor (P.f)  in DC circuits due to zero frequency and phase angle difference (Φ) between current and voltage.

What is Power Factor?

Power factor may be defined by three definitions and formals as follow.

1).  The Cosine of angle between Current and Voltage is called Power Factor.

Where:

2). The ratio between Resistance and Impedance in AC Circuit is known as Power Factor.

Cosθ = R ÷ Z

Where:

Impedance “Z” is the total resistance of AC Circuit i.e.

Z = √ [R2 + (XL + XC)2]

Where:

Related Post: Difference Between Active and Reactive Power

3).The ratio between Active Power and Apparent Power in volts-amperes is called power factor.

Where

Power Factor Formula in Three Phase AC Circuits

Power Factor Cosθ = P ÷ √3 VL × IL     Line Current & Voltage

Power Factor Cosθ = P ÷ √3 VP × IP  Phase Current & Voltage

Power Factor Triangle and Examples

What is Power Factor (Cosθ) ? Power Factor Triangle and Examples

Beer analogy of active or true power, reactive power, apparent power and power factor.

Beer Analogy of True power, Reactive power, Apparent Power and Power factor

Chips bag analogy of true or real power, reactive power, apparent power and power factor.Active, Reactive, Apparent and Complex Power

Good to know:

In pure resistive circuit, power factor is unity (1) due to zero phase angle difference (Φ) between current and voltage. 

In pure capacitive circuit, power factor is leading due to the lagging  VARs. i.e. Voltage is lagging 90° behind the current. In other words, Current is leading 90° from voltage (Current and voltage are 90° out of phase with each others, where current is leading and voltage is lagging).

In pure inductive circuit, power factor is lagging due to the leading VARs i.e. Voltage is leading 90° from current. In other words, Current is lagging begging 90° behind the voltage (Current and voltage are 90° out of phase with each, others where voltage is leading and current is lagging).

Related Posts:

Exit mobile version